Acta Cryst. (1980). B36, 1930–1932

Structure of μ_3 -(1-6- η -Bitropyl)-carbido- μ -carbonyl-tridecacarbonyl-*octahedro*hexaruthenium

BY GERALD B. ANSELL

Analytical and Information Division, Exxon Research and Engineering Co., PO Box 121, Linden, NJ 07036, USA

and John S. Bradley

Corporate Pioneering Research Laboratories, Exxon Research and Engineering Co., PO Box 45, Linden, NJ 07036, USA

(Received 1 November 1979; accepted 10 March 1980)

Abstract. $[Ru_6C(C_{14}H_{14})(CO)_{14}]$, monoclinic, $P2_1/c$, a = 10.393 (1), b = 16.568 (2), c = 19.646 (2) Å, $\beta = 101.24$ (8)°, Z = 4, $D_c = 2.37$ Mg m⁻³. 3672 independent reflections have been used to refine the structure, giving an R value of 0.031. The central C atom lies close to the center of a slightly distorted octahedron of Ru atoms. The mean Ru–C distance is 2.055 Å. The Ru₆ cluster has one bridging and thirteen terminal carbonyl groupings. A bitropyl molecule resides on one triangular face of the cluster.

Introduction. The high-yield synthesis of $[Ru_{6}C(CO)_{14}(bitropyl)]$ from $[NMe_{4}]_{2}[Ru_{6}C(CO)_{16}]$ has been discussed by Bradley & Ansell (1979). Intensity data for $0 < 2\theta < 45^{\circ}$ (Mo Ka) were collected using a crystal of dimensions $0.22 \times 0.22 \times$ 0.20 mm encapsulated in a thin glass tube on an Enraf-Nonius CAD-4 diffractometer.* A variable scan rate $(4-20^{\circ} \text{ min}^{-1})$ was used for data collection with fast scans for intense reflections and slower scans for weaker ones. 4278 independent reflections were measured. Of these, 3672 had $F > 3\sigma(I)$ and were utilized for the subsequent structure solution and refinement. $\{\sigma(I) = |S^2(C + R^2B) + (pI)^2|^{1/2}$ where S = scan rate, C is the total integrated peak count, R is the ratio of scan time to background counting time, Bis the background count and parameter p is the factor introduced to down-weight intense reflections and was set to 0.05. The crystal remained stable throughout the collection period. An absorption correction was not made since ψ scans indicated that the correction to I was small. The structure was solved using a combination of direct methods (MULTAN), Fourier maps and least-squares techniques. During the final stages of

Fig. 1. The molecular configuration and numbering scheme.

least-squares refinement, all atoms were assigned anisotropic temperature factors. Ru scattering factors were corrected for anomalous dispersion (f' = -1.2, f'' = 1.1 e). A weighting scheme was chosen such that for $F > 85 \sqrt{w} = 85/F_o$, for $41 < F < 85 \sqrt{w} = 1$ and for $F \le 41 \sqrt{w} = F_o/41$. This gave similar average $w\Delta^2$ values for ranges of increasing F_o and R = 0.031 and wR = 0.036.* All parameter changes were less than their e.s.d.'s. Final atomic coordinates are listed in Table 1, bond lengths and angles in Table 2. Fig. 1 illustrates the molecular configuration and the atomic numbering scheme.

© 1980 International Union of Crystallography

^{*} Data were collected by Molecular Structures Corporation, College Station, Texas.

^{*} Lists of structure factors, anisotropic thermal parameters and r.m.s. radii have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 35200 (25 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Table 1. Fractional atomic coordinates $(\times 10^4)$ with e.s.d.'s in parentheses

	x	У	Z
Ru(1)	3909 (<1)	1638 (<1)	2122 (<1)
Ru(2)	1901 (<1)	1338 (<1)	847 (<1)
Ru(3)	-96 (<1)	1531 (<1)	1725 (<1)
Ru(4)	1900 (<1)	1962 (<1)	2873 (<1)
Ru(5)	1847 (<1)	2796 (<1)	1540 (<1)
Ru(6)	1976 (<1)	406 (<1)	2129 (<1)
où	5637 (6)	3079 (3)	2617 (3)
O(2)	5955 (5)	1076 (4)	1316 (3)
O(3)	3910 (6)	933 (5)	-20(3)
O(4)	-11(5)	855 (4)	-445 (3)
O(5)	-1863(5)	608 (3)	563 (3)
O(6)	-1530 (6)	744 (5)	2756 (4)
O(7)	-1931 (6)	2954 (4)	1688 (4)
O(8)	3130 (6)	3582 (3)	3273 (3)
O(9)	-349 (6)	2474 (4)	3571 (3)
O(10)	1683 (6)	2867 (3)	-1(3)
O(11)	3805 (6)	4110 (4)	1475 (3)
O(12)	-87 (7)	4162 (4)	1178 (4)
O(13)	-172 (6)	-837 (4)	2084 (3)
O(14)	3007 (6)	-646 (3)	1100 (3)
C(1)	4944 (7)	2559 (4)	2410 (4)
C(2)	5140 (7)	1295 (5)	1588 (4)
C(3)	3177 (7)	1083 (5)	322 (4)
C(4)	682 (7)	1022 (4)	61 (4)
C(5)	-1184 (7)	967 (4)	970 (4)
C(6)	-968 (8)	1042 (5)	2376 (4)
C(7)	-1224 (7)	2435 (5)	1670 (4)
C(8)	2663 (7)	2987 (5)	3088 (4)
C(9)	496 (8)	2263 (5)	3328 (4)
C(10)	1768 (7)	2509 (4)	517 (3)
C(11)	3078 (7)	3601 (4)	1522 (3)
C(12)	617 (8)	3624 (5)	1334 (4)
C(13)	634 (7)	-370(4)	2114 (4)
C(14)	2578 (7)	-199(5)	1428 (4)
C	1927 (6)	1606 (4)	1882 (3)
C(15)	3300 (7)	1544 (4)	3/9/(3)
C(16)	2399 (6)	901 (4)	3647 (3)
C(17)	2556 (7)	144 (4)	3302 (3)
C(10)	3334 (7)	-70(4)	2922 (4)
C(19)	4360 (7) 5105 (6)	433 (4)	2773(3) 3102(3)
C(20)	A747 (6)	1408 (4)	3102(3)
C(21)	4747(0) 5465(7)	1470(4)	3702 (3) 4400 (3)
C(22)	5778 (7)	1318 (5)	5074 (3)
C(24)	5644 (8)	2052 (5)	5311 (4)
C(25)	6476 (9)	2603 (5)	5029 (4)
C(26)	7437 (9)	2377 (6)	4694 (4)
C(27)	7766 (8)	1540 (6)	4552 (4)
C(28)	6926 (8)	919 (5)	4450 (4)

Discussion. The octahedral Ru framework of the cluster is very nearly regular. The 12 Ru-Ru bonds may be grouped as follows: (a) eight unbridged distances averaging 2.925 Å, (b) three distances bridged by C atoms in one of the seven-membered rings of the bitropyl molecule averaging 2.890 Å, and (c) one distance of 2.778 Å which is symmetrically bridged by a carbonyl group. The bridging by bitropyl carbons is the first to be noted. The Ru-Ru distances in groups A and B are essentially the same. Ru-Ru shortenings due to bridging carbonyls have been observed in

 $[Ru_{6}C(CO)_{17}]$ [2.907 (unbridged), 2.855 Å)] (Sirigu, Bianchi & Benedetti, 1969), the cluster $[H_2Ru_6(CO)_{18}]$ (2.954, 2.867 Å) (Churchill & Wormald, 1971) and $[Me_4N_2][Ru_6C(CO)_{16}]$ (2.903, 2.852 Å) (Ansell & Bradley, 1980). The encapsulated C lies close to the geometric center of the cluster and is six coordinate. Ru-C distances range from 2.022-2.080 Å (average 2.055 Å) and are almost identical to similar values of $2.05 \text{ Å in } [\text{Ru}_6\text{C}(\text{CO})_{17}]$ (Sirigu *et al.*, 1969), 2.04 Å in [Ru₆C(CO)₁₄(arene)] (Mason & Robinson, 1968) and 2.042 Å in $[NMe_4]_2[Ru_6C(CO)_{16}]$ (Ansell & Bradley, 1980). Ru-C-Ru angles range from 174.8 to 175.3°. Ru(1), Ru(4) and Ru(6) have two terminal carbonyl ligands, Ru(3) has three, and Ru(2) and Ru(5) have two terminal carbonyls and each shares a bridging carbonyl. The near linearity of the terminal carbonyls is clearly demonstrated with Ru-C-O angles ranging from 168.4-178.0°. Ru-C distances range from 1.853-1.924 Å and C-O from 1.127-1.156 Å. The bridging carbonyl has C(10) symmetrically placed between and Ru(2)Ru(5)[Ru(2)-C(10)]Ru(5)-C(10), 2.042, 2.051 Å] and Ru-C-O angles of 138.5 and 136.0° respectively. The geometry of the carbonyls, the Ru-C values of bridged, semi-bridged, and non-bridged carbonyls and the corresponding angles are comparable with those in the compounds mentioned above. The stereochemistry around the triangular Ru(1), Ru(4), Ru(6) face is unique, however. The equation of the mean plane through Ru(1), Ru(4), Ru(6)is -0.4103 X' + 0.3981 Y' - 0.8206 Z' + 3.6072 = 0and carbonyl-group deviations from this plane are: C(1), O(1) (-0.24, -0.49 Å); C(2), O(2) (0.01, -0.10)Å); C(8), O(8) (0.40, -0.03 Å); C(9), O(9) (0.15, -0.03 Å); C(9) (0.15, -0.03 Å)0.30 Å); C(13), O(13) (0.08, 0.16 Å); and C(14), O(14) (-0.34, 0.33 Å). These three rutheniums and the six carbonyls linked to them are clearly almost coplanar. The angles between the pairs of carbonyls are 90.1, 89.2, and 88.6°. The three rutheniums also make close contact with the three short C=C bonds in one of the bitropyl rings. The six resulting close $Ru \cdots [C(15)...C(20)]$ contacts range from 2.174– 2.399 Å. They clearly indicate an interaction between the triangular face of the cluster and the alternating double- and single-bond system over six of the seven atoms in this ring. This interaction results in near equalization of the five corresponding C-C bonds in the bitropyl ring (1.411 - 1.450 Å). The equation

Fig. 2. A stereoscopic view of the molecular packing within the unit cell.

$[Ru_{6}C(C_{14}H_{14})(CO)_{14}]$

Table 2. Bond lengths (Å) and angles (°)

R	1-Ru			D C D.4			D.o.			• ~ ~				
RU1	RU2	2.972(<1)	RU1	C19	2 403	(6)	DU2	DU2	C2	172 0/0 2)		Interl	igand Ang	gles
RU1	RU4	2.832(<1)	RU1	C20	2.224	(6)	RUS	RU2	C4	94 1(0 2)	01	RU I		90.1(0.3)
RU1	RU5	2.936(<1)	RU4	C15	2,205	(6)	RU3	RU2	č10	94.1(0.2)	C3	RUZ PU2	C10	92 9(0 3)
RU1	RU6	2.867(<1)	RU4	C16	2.316	(6)	RU5	RU2	Č3	123.2(0.2)	C4	RU2	c10	90.6(0.3)
RU2	RU3	2.964(<1)	RU6	C17	2.305	(7)	RU5	RU2	C4	124.9(0.2)	Č5	RU3	C6	91.5(0.3)
RU2	RU5	2.778(<1)	RU6	C18	2.181	(6)	RU5	RU2	C10	47.4(0.2)	C5	RU3	C7	94.3(0.3)
RUZ	RUD	2.943(<1)					RU6	RU2	C3	116.6(0.2)	C6	RU3	C7	90.3(0.3)
DIIS	RU4	2.041(<1)		C-C Bitr	opyl		RU6	RU2	C4	117.4(0.2)	C8	RU4	C9	89.2(0.3)
RU3	RUG	2.902(<1)	C15	C16	1.411	(9)	RU6	RU2	C10	139.4(0.2)	C10	RU5	C11	92.6(0.3)
RU4	RUS	2.952(<1)	C16	C17	1.450	(9)	RU2	KU3	65	82.6(0.2)	C10	RU5	C12	93.6(0.3)
RU4	RU6	2.971(<1)	C17	C18	1.437	(9)	RUZ DU2	KU 3	67	140.2(0.3)	C11	RU5	012	85.0(0.3)
			C18	C19	1.438	(9)	DUA	DU3	C5	123.2(0.2)	C14	R06	613	88.6(0.3)
			C19 C20	C20	1.426	(9)	RII4	RUS	C5 C6	26 8(0.2)				
Ru-C	Bridged	Carbonyl	(2)	C15	1.522	(9)	RU4	RU3	C.7	101.3(0.2)	Angl	os in Br	idoina (arbonyl
RU2	C10	2.042(6)	(21	(22	1.520	(9)	RU5	RU3	C5	123.9(0.2)	RII2	r10	010	138,5(0,6)
RU5	C10	2.051(6)	(22	023	1 506	(10)	RU5	RU3	Č6	144.1(0.3)	RU5	č10	010	136.0(0.6)
			C23	C24	1.343	(11)	RU5	RU3	C7	82.1(0.2)				
Ru-C	Terminal	Carbonul	C24	C25	1.442	(iii)	RU6	RU3	C5	101.3(0.2)				
RUI	C1	1 889(7)	C25	C26	1.351	(12)	RU6	RU3	C6	88.1(0.3)	Ang	les in 1	ferminal	Carbonyl
RU1	C2	1.894(7)	C26	C27	1.468	(12)	RUD	RU3	L/	164.3(0.2)	RU1	C1	01	174.7(0.7)
RU2	C3	1.879(7)	C27	C28	1.339	(11)	DU1	RU4 DUA		174 0(0.2)	RU1	C2	02	1/4.3(0.7)
RU2	C4	1.872(7)	C28	C22	1.504	(10)	RUS	RU4	69	127 0(0.2)	RU2	63	03	175 4(0.5)
RU3	C5	1.924(7)					RU3	R114	60	86 0(0.2)	RU2	C4	04	175.4(0.6)
RU3	C6	1.887(8)	Tri	iangular	Faces of	Rug Clusters	RU5	RU4	ČŠ	73.2(0.2)	RU3	60	05	178 0(0.8)
RU3	(/	1.891(7)	RU 1	RU2	RU5	61.3(<0.1)	RU5	RU4	C9	114.0(0.2)	RU3	C7	07	174.0(0.7)
RU4 DUA	6	1.88/(/)	RU 1	RU5	RU2	62.6(<0.1)	RU6	RU4	C8	147.2(0.2)	RU4	C8	08	174.2(0.7)
RU4 DU5	C11	1.921(7)	RU5	RU 1	RU2	56.1(<0.1)	RU6	RU4	C9	123.3(0.2)	RU4	C9	09	176.2(0.7)
RUS	(12	1.000(7)	RUT	RU2	RU6	58.0(<0.1)	RU1	RU5	C10	96.7(0.2)	RU5	C11	011	176.2(0.7)
RU6	C13	1.892(7)	RU2	RUI	RU6	60.5(<0.1)	RU1	RU5	C11	91.3(0.2)	RU5	C12	012	175.1(0.7)
RU6	C14	1,905(7)	DU1	DUA	RUZ	61.5(<0.1)	RUI	RU5	C12	169.1(0.3)	RU6	C13	013	177.9(0.7)
			RUA	RU4	DUS	61.0(<0.1)	RUZ DU2	RUD	C10	47.1(0.2)	RU6	C14	014	168.4(0.7)
			RU4	RU5	RUI	57.5(<0.1)	RU2	RUS	C12	122.5(0.2)				
C-0	Bridged C	arbonyl	RU1	RU4	RU6	59.2(<0.1)	RU3	RU5	C10	93 3(0 2)	Pot	woon (1	uctor and	Bitropyl
C10	010	1.166(8)	RU4	RU1	RU6	62.3(<0.1)	RU3	RUS	c11	174.1(0.2)	DU/	Rul	uster and rig	92.8(0.2)
			RU4	RU6	RU1	58.0(<0.1)	RU3	RU5	C12	95.3(0.3)	RUG	RUI	C19	62.5(0.2)
~ ~	- · ·		RU4	RU3	RU5	60.9(<0.1)	RU4	RU 5	C10	138.7(0.2)	RU4	RU1	C20	87.7(0.2)
C1-0	lermina	Larbonyl	RU 3	RU4	RU5	61.9(<0.1)	RU4	RU5	C11	117.4(0.2)	RU6	RU1	C20	91.0(0.2)
C2	02	1.144(9)	RU3	RU5	RU4	5/.2(<0.1)	RU 4	RU 5	C12	115.5(0.3)	RU6	RU4	C15	93.2(0.2)
63	02	1.144(9) 1.137(10)	RU4 DU6	RU 3 DU 4	RUD	63.1(<0.1)	RU1	RU6	C13	177.1(0.2)	RU1	RU4	C16	96.0(0.2)
Č4	04	1,142(9)	RUA	RUG	DII3	58 5(<0.1)	RUT	RU6	C14	92.4(0.2)	RU6	RU 4	C15	93.2(0.2)
C5	05	1.127(9)	RU2	RU3	RUS	55.7(<0.1)	RUZ	RU6	C13	116.5(0.2)	RU1	RU4	C16	96.0(0.2)
C6	06	1.147(11)	RU5	RU2	RU3	62.5(<0.1)	RU2	RU6	C14	6/.3(0.2)	RU4	RU6	C17	72.5(0.2)
C7	07	1.137(10)	RU2	RU5	RU3	61.8(<0.1)	RU3	RUD	C14	118 7(0.2)	RUI	KU6	C18	80.5(0.2)
C8	08	1.127(9)	RU2	RU3	RU6	60.9(<0.1)	RU3 RU2	RUG	C13	120.5(0.2)	RU4	RUD	C18	95.2(0.2)
C9	09	1.133(9)	RU3	RU2	RU6	57.5(<0.1)	R114	RUG	C14	148 8(0 2)	NU I	KUU	017	55.5(0.2)
(12	012	1.149(9)	RU3	RU6	RU2	61.6(<0.1)								
613	013	1.130(10)					Fouat	orial Ro	ltc of Du	- Cluctors		Bitr	opyl Ang	les
C14	014	1,129(9)	D								C21	C15	C16	125.1(0.6)
			RI12	Dill			RUG	RUT	RUZ	90.2(0.1) 90.5(-0.1)	C15	C16	C17	128.3(0.6)
			RU2	RUI	č2	85.5(0.2)	RU 1	RU2	RU3	87.0(<0.1)	C16	C1/	C18	128.4(0.6)
- F	Ru-C Carbi	ido	RU 4	RU1	cī	97.2(0.2)	RU5	RU2	RU6	92.1(<0.1)	C17	C18	C19 C20	120.7(0.0)
RU1	C	2.022(5)	RU4	RU 1	C2	172.6(0.2)	RU4	RU 3	RU2	90.2(<0.1)	C10	C20	C20	124 1(0.6)
RU2	C	2.076(5)	RU5	RU 1	C1	85.4(0.2)	RU5	RU 3	RU6	90.0(<0.1)	C 20	(2)	C15	117.7(0.5)
RU3	Ĺ	2.069(5)	RU5	RU1	C2	120.1(0.2)	RU1	RU4	RU3	92.2(<0.1)	C20	C21	C22	108.4(0.5)
RU4 DU5	C C	2.039(5)	RU6	RU1	C1	158.8(0.2)	RU6	RU4	RU5	88.2(<0.1)	C15	C21	C22	108.0(0.5)
RUG	č	2.000(5)	RUB	RUT	C2	109.8(0.2)	RU2	RU5	RU4	91.7(<0.1)	C21	C22	C23	110.6(0.6)
	C C	2.045(5)	RUI	RUZ DU2	L3 C4	92.6(0.2)	RUT DU1	RU5	RU3	87.3(<0.1)	C21	C22	C28	113.3(0.6)
			RU1	RU2	C10	05 8(0.2)	PU1/	RUD RUG	RU3 DU2	91.4(<0.1)	C23	022	L28	107.5(0.0)
			NUT	102	010	33.0(0.2)	104	NUU	NU2	00.1(<0.1)	622	023	024	123.0(0.7)
											623	624	620	120.1(0.0)
							A	ngles In	volving (Carbido C	C25	C26	C27	124.5(0.0
							RU1	C	RU3	174.8(0.3)	(26	C27	C28	125.8(0.8
							RU4	С	RU2	175.3(0.3)	C27	C28	C22	125.9(0.7
							RU5	С	RU6	175.0(0.3)				

of the mean plane through these six C atoms is -0.3873X' + 0.4319Y' - 0.8145Z' + 5.5823 = 0and they deviate -0.04, 0.08, -0.04, -0.05, 0.10, and -0.050 Å from it. The seventh non-bonded C atom, C(21), deviates -0.60 Å from this plane. This plane makes an angle of 2.36° with that through the three rutheniums. The arrangement of the six corresponding atoms in the second bitropyl ring results in more clearly defined alternating long and short bonds (1.343, 1.442, 1.351, 1.468, 1.339 Å). The bond values of 1.522, 1.520, 1.590, 1.506, and 1.504 Å associated with C(21) and C(22) and the corresponding angles are consistent with these atoms having normal tetrahedral bonding. Inspection of Fig. 1 shows that the two bitropyl rings are twisted away from each other so as to minimize intramolecular ring-ring interaction.

Molecular packing is shown in Fig. 2. All closest intermolecular distances are consistent with van der Waals packing radii.

References

- ANSELL, G. B. & BRADLEY, J. S. (1980). Acta Cryst. B36, 726-728.
- BRADLEY, J. S. & ANSELL, G. B. (1979). ACS/CSJ Chemical Congress, Honolulu, Hawaii. Inorganic Abstracts, No. 505.
- CHURCHILL, M. R. & WORMALD, J. (1971). J. Am. Chem. Soc. 93, 5670-5677.
- MASON, R. & ROBINSON, W. R. (1968). Chem. Commun. pp. 468-469.
- SIRIGU, A., BIANCHI, M. & BENEDETTI, E. (1969). Chem. Commun. p. 596.